<sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub><sub id="5rfnl"><dfn id="5rfnl"><mark id="5rfnl"></mark></dfn></sub>
    <address id="5rfnl"><listing id="5rfnl"></listing></address>
      <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>
      <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>

          <address id="5rfnl"><listing id="5rfnl"></listing></address>

            <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>

            <thead id="5rfnl"><var id="5rfnl"><output id="5rfnl"></output></var></thead>

            <address id="5rfnl"></address>

            ? ? Ultrahigh-density data storage has received much attention?in recent years because of its technological importance, and?substantial progress has been made lately.[1±6] Haridas and?coworkers have suggested three-dimensional high-density?data storage based on two photos.[1] Chou et al. used nanoimprinting?lithography for high-density data storage.[2,3] Scanning?probe microscopy (SPM) has a potential application in?high-density data storage due to its ability to make local electric?fields from the tip on a nanometer scale.[7±14] Recording at?the nanometer scale has been demonstrated by SPM on various?materials. Among them, organic molecules have received?much attention because of their controllable molecular structures?and corresponding properties.[15±26,28] By changing?molecular structure, it is possible to optimize recording on?organic materials. Furthermore, the size of the recorded mark?can possibly be at a molecular scale. In the past, we have?reported molecular recording on a few organic materials up to?a data density of about 1013 bits/cm2.[5±7,17] To decrease the?size of the recorded marks, correspondingly increase their?density, and furthermore understand the recording mechanism,we have designed and synthesized different molecules.In this communication, we report molecular recording on an?organic p-nitrobenzonitrile (PNBN) thin film by STM under?ambient conditions, which shows the smallest mark size?among all the organic thin films previously studied. A possible
            recording mechanism is discussed.

            影響因子
            30.849
            論文下載
            作者

            DX Shi,YL Song,DB Zhu,HX Zhang,SS Xie,SJ Pang.

            期刊

            Advanced Materials,13,14,1103-1105(2001)

            年份
            开云全站登录官网app_app下载-官网下载 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>