<sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub><sub id="5rfnl"><dfn id="5rfnl"><mark id="5rfnl"></mark></dfn></sub>
    <address id="5rfnl"><listing id="5rfnl"></listing></address>
      <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>
      <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>

          <address id="5rfnl"><listing id="5rfnl"></listing></address>

            <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>

            <thead id="5rfnl"><var id="5rfnl"><output id="5rfnl"></output></var></thead>

            <address id="5rfnl"></address>

            Dendrite penetration in ceramic lithium conductors severely constrains the
            development of solid-state batteries (SSBs) while its nanoscale origin remains
            unelucidated. An in situ nanoscopic electrochemical characterization technique
            is developed based on conductive-atomic force microscopy (c-AFM)
            to reveal the local dendrite growth kinetics. Using Li7La3Zr2O12 (LLZO) as a
            model system, significant local inhomogeneity is observed with a hundredfold
            decrease in the dendrite triggering bias at grain boundaries compared
            with that at grain interiors. The origin of the local weakening is assigned to
            the nanoscale variation of elastic modulus and lithium flux detouring. An
            ionic-conductive polymeric homogenizing layer is designed which achieves a
            high critical current density of 1.8 mA cm–2 and a low interfacial resistance of
            14 Ω cm2. Practical SSBs based on LiFePO4 cathodes can be stably cycled over
            300 times. Beyond this, highly reversible electrochemical dendrite healing
            in LLZO is discovered using the c-AFM electrode, based on which a model
            memristor with a high on/off ratio of ≈105 is demonstrated for >200 cycles.
            This work not only provides a novel tool to investigate and design interfaces
            in SSBs but also offers opportunities for solid electrolytes beyond energy


            Ziheng Lu,Ziwei Yang,Cheng Li,Kai Wang,Jinlong Han,Peifei Tong,Guoxiao Li,Bairav Sabarish Vishnugopi,Partha P.Mukherjee,Chunlei Yang,Wenjie Li.


            Advanced Energy Materials,11:16,2003811(2021)

            开云全站登录官网app_app下载-官网下载 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>