<sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub><sub id="5rfnl"><dfn id="5rfnl"><mark id="5rfnl"></mark></dfn></sub>
    <address id="5rfnl"><listing id="5rfnl"></listing></address>
      <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>
      <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>

          <address id="5rfnl"><listing id="5rfnl"></listing></address>

            <sub id="5rfnl"><var id="5rfnl"><ins id="5rfnl"></ins></var></sub>

            <thead id="5rfnl"><var id="5rfnl"><output id="5rfnl"></output></var></thead>

            <address id="5rfnl"></address>

            Solid electrolytes have attracted much attention due to their great prospects
            in a number of energy- and environment-related applications including fuel
            cells. Fast ion transport and superior mechanical properties of solid electrolytes
            are both of critical significance for these devices to operate with high
            efficiency and long-term stability. To address a common tradeoff relationship
            between ionic conductivity and mechanical properties, electrolyte membranes
            with proton-conducting 2D channels and nacre-inspired architecture
            are reported. An unprecedented combination of high proton conductivity
            (326 mS cm?1 at 80 °C) and superior mechanical properties (tensile strength
            of 250 MPa) are achieved due to the integration of exceptionally continuous
            2D channels and nacre-inspired brick-and-mortar architecture into one materials
            system. Moreover, the membrane exhibits higher power density than
            Nafion 212 membrane, but with a comparative weight of only ≈0.1, indicating
            potential savings in system weight and cost. Considering the extraordinary
            properties and independent tunability of ion conduction and mechanical
            properties, this bioinspired approach may pave the way for the design of nextgeneration
            high-performance solid electrolytes with nacre-like architecture.


            Guangwei He,Mingzhao Xu,Jing Zhao,Shengtao Jiang,Shaofei Wang,Zhen Li,Xueyi He,Tong Huang,Moyuan Cao,Hong Wu,Michael D.Guiver and Zhongyi Jiang.


            Advanced Materials,29:28,1605898(2017)

            开云全站登录官网app_app下载-官网下载 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>